NRG Rocket

Bob Nimcheski Emanuel Salinas Lee Freytes Colón Thomas Sasser Adriana Fisk Stonn Billy

Background, Need, Why Northrop Grumman, and Stakeholder Impact

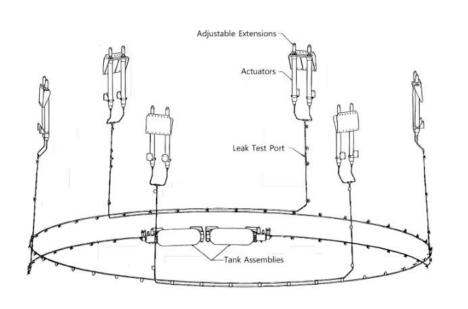
Background & Traditional Method

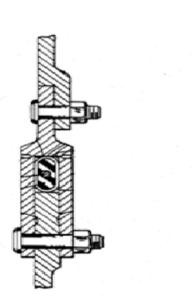
- Rockets traditionally use frangible joints for stage separation due to their simplicity and reliability.
- Example: Space Shuttle used frangible joints for stability on the launch pad, with controlled explosives as a backup for separation.

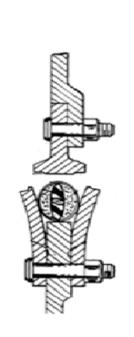
Challenges with Frangible Joints

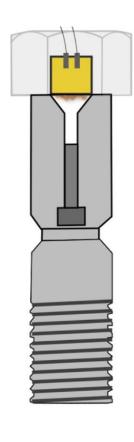
- Risk of failure If the explosive fails, stages remain attached, jeopardizing the mission.
- High shock loads Potential to damage sensitive spacecraft equipment.
- Single-use system Requires purchasing new explosive material for each launch.

Magnetic Separation System: A Better Alternative

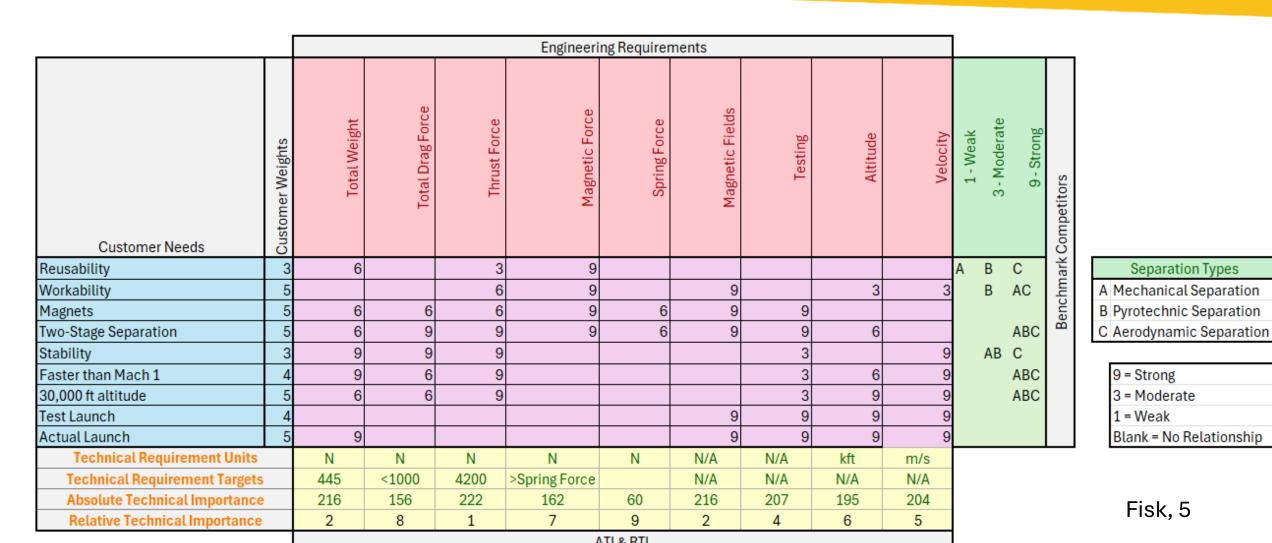

- No explosives required Increases safety and reliability.
- o Reduced shock loads Protects delicate onboard instruments.
- o Reusable Lowers operational costs and supports reusable rocket designs.


Why Northrop Grumman?


- Pioneered magnetic separation for rockets to enhance cost-effectiveness and reusability.
- Eliminates need for explosive charges, reducing material costs.
- Aligns with modern spaceflight goals safer, more sustainable, and cost-efficient solutions.

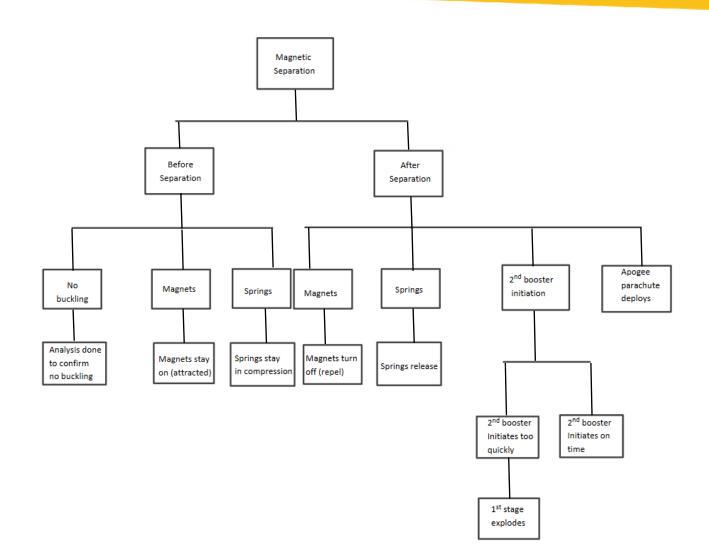

Other Types of Separation Devices

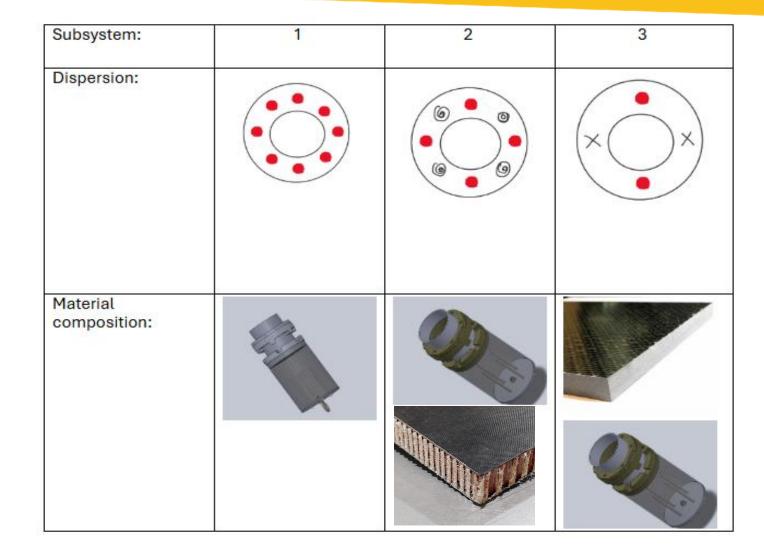
- Frangible Joints
- Pneumatic Stage Separation System
- Explosive Bolts



Project Description

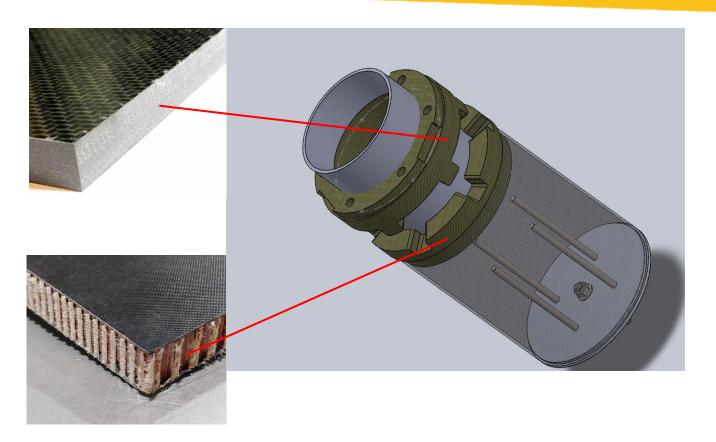
- This project revolves around creating a magnetic separation device for a supersonic rocket that will reach a maximum altitude of 50,000 [ft]
- Northrop Grumman is sponsoring this project, and it is important because magnetic separation in rockets can be a much cheaper, safer, and more effective alternative to present devices
- 80% of time will be allocated to separation device research
- 20% of time will be allocated to other parts of the rocket


Quality Function Deployment (QFD)


Black Box Model

Detailed Decomposition Model

Concept Generation Morphological Matrix



KEY:

- = magnet
- @ = spring
- χ = black powder charge

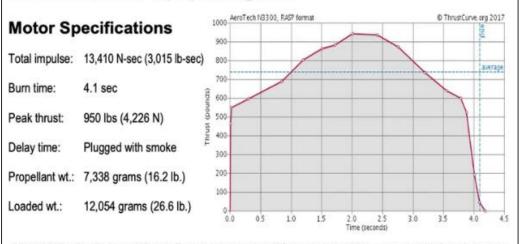
Concept Generation: Fully Carbon Fiber & Honeycomb Core

- These concepts were generated on improving from the current aluminum design.
 - Fully Carbon Fiber Base
 - Honeycomb core wrapped in Carbon Fiber
- Advantage Fully Carbon
 - High strength in Compression and Tension
- Disadvantage of Fully Carbon
 - Weight
 - Cost of Materials
- Advantage of Honeycomb Core
 - Light and reduce of carbon fiber
 - High Compression Load
- Disadvantage
 - Manufacturing Challenges
 - Honeycomb core lacks in tension

Factor of Safety Table

*ASSUME MAXIMUM DRAG OF 1000 LBS	*

	Material/Component:	Type of Loading:	Factor of Safety (FoS):
	Aluminum/Separation	Static	N/A
	device		
	Aluminum/Separation	Dynamic/Compressive	18.15
	device		
	Carbon Fiber/Separation	Static	N/A
[2]	device		
	Carbon Fiber/Separation	Dynamic/Compressive	39.46
	device		
	Carbon Fiber & Honeycomb	Static	N/A
	Core/Separation device		
	Carbon Fiber & Honeycomb	Dynamic/Compressive	TBD
	Core/Separation device		


Theoretical Velocity and Height; Given

- Assumption
 - No Air Resistance
- First Stage
 - Avg. Thrust: 3336.165 N
 - Mass of Rocket: 46.81 kg
 - Initial Velocity: 0
 - o Time: 4.1 s
- Second Stage
 - Mass of Rocket: 23.405 kg
 - o Time: 4.1 s

N3300R-PS Redline™

RMS hardware required: 98mm aft closure, 98mm forward closure, 98mm forward seal disk, 98/15360 case.

Also requires separately packaged 1 x P/N 03040-6 phenolic liner and 6 x P/N 03618-6 propellant grains.

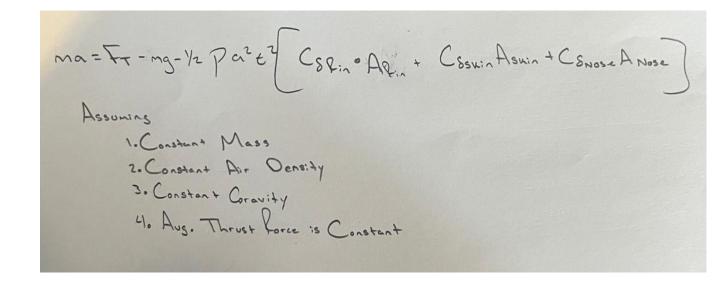
P/N 14330P • Certified by the Tripoli Rocketry Association (TRA) • Made in U.S.A. • www.aerotech-rocketry.com AeroTech Division, RCS Rocket Motor Components Inc., 2113 W. 850 N.St., Cedar City, UT 84721

Theoretical Velocity and Height

First Stage

- Avg. Thrust mg = ma
- \circ a = 61.46 m/s²
- \circ Vf1 = Vo + (at)
 - Vf1 = 251.986 m/s
- \(\text{Y1} = \text{Yo} + \text{Vot} \\
 +0.5at^2
 \]
 - Y1 = 1694.78 ft
- \circ M1 = 0.734
 - Subsonic
 - M<1

Second Stage


- Avg. Thrust mg = ma
- \circ a = 132.73 m/s²
- \circ Vf1 = Vo + (at)
 - \blacksquare Vf2 = 796.179 m/s
- Y2 = Y1 + Vf1t +
 0.5at^2
 - Y2 = 8744.42 ft
- \circ M2 = 2.32
 - Supersonic
 - M>1

Max Height

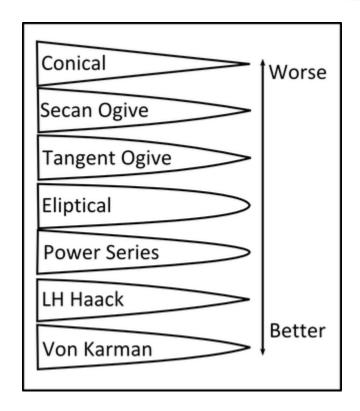
- O Vf = 0 at max height
- \circ Vf = Vo +(-g)t
- \circ Y3 = Y2 + Vf2t + 0.5(-g)t^2
 - Y3 = 114,744 ft

Theoretical Velocity and Height

- Very conservative calculation
 - What's not included
 - Drag force
 - Area
- What's Next?
 - New set of analysis taking in account of drag force
 - RASAero II Simulations

Adriana's Analysis – Nose Cone Drag Force

- L-D Von Karman Haack Series Nose Cone shape
 - o The shape of the cone is found by calculating C
 - o Goal is to have minimum drag range: 0-0.66
- Haack Series shape equation


$$\theta = \cos^{-1}(1 - \frac{2x}{L})$$

$$y = \frac{R}{\sqrt{\pi}} \sqrt{\theta - \frac{\sin(2\theta)}{2} + C\sin^3(\theta)}$$

o C = 0; minimum for given length and diameter

$$P D = Cd \frac{\rho V^2}{2} A ; A = \pi r^2, r = 3.085 in$$

- \circ D: Drag Force = 5.4 pounds
- \circ *Cd: Drag Coefficient* = 0.05
- \circ ρ : Density = 0.0408 pound per foot^3
- \circ V: Velocity = 2611 ft/s
- \circ A: Reference Area = 2.4108 ft/s^2
- Assumptions based on design
 - Nose cone drag will be minimal
 - Optimal for performance- speed and weight

Lee's Analysis (Fin Drag)

```
1% Rocket Fin Drag Calculation
 2% Author: Lee Freytes Colón
 3 % Date: March 2, 2025
 5 clc; clear; close all;
 7 % Given Data
 8 \text{ rho} = 0.0880349; % Air density at 20,000 ft (kg/m<sup>3</sup>)
 9 \text{ V} = 686; % Velocity in m/s (Mach 2)
10 Cd = 0.005; % Drag coefficient
11 A single = 0.01677; % Area of one fin in m^2
12 num fins = 6; % Number of fins
13
14 % Total Area Calculation
15 A total = num fins * A single;
17 % Drag Force Calculation for One Fin
18 D single = 0.5 * \text{ rho} * \text{ v}^2 * \text{ Cd} * \text{ A single};
19
20 % Total Drag Force Calculation
21 D total = 0.5 * \text{ rho} * \text{ v}^2 * \text{ Cd} * \text{ A total};
23 % Display Results
24 fprintf('Total fin area: %.5f m^2\n', A total);
25 fprintf('Drag force for one fin: %.2f N (%.3f lbf)\n', D single, D single * 0.224809);
26 fprintf('Total drag force for six fins: %.2f N (%.3f lbf)\n', D_total, D total * 0.224809);
Total fin area: 0.10062 m^2
Drag force for one fin: 1.74 N (0.390 lbf)
Total drag force for six fins: 10.42 N (2.343 lbf)
```

- Fin drag is proportional to surface area, velocity squared, and air density.
 - Reducing drag is essential for improving rocket efficiency and stability at supersonic speeds.
 - Future improvements could focus on refining fin shapes, using lower-drag materials, or adjusting fin positioning to minimize resistance.
 - Future improvements could focus on refining fin shapes, using lower-drag materials, or adjusting fin positioning to minimize resistance.

Stonn's Analysis: Skin Friction Drag Analysis

- Skin Drag at Mach 2 (30,000 ft)
- Drag Forces
 - O $D_{Total} = 44.1 lbf$
 - $O_{Stage\ 1} = 17.8\ lbf$
 - o $D_{Stage\ 2} = 26.3\ lbf$
 - \circ Re = 7.31 \times 10⁷ (turbulent)
 - Low drag at peak speed
- Rocket Specs
 - o Length = 158.85 "
 - Diameter = 6.17'
 - \circ Wetted Area: 21.38 ft^2
- Thrust Context:
 - 44.1 lbf drag = 4.6% of the 950 lbf thrust.
 - 26.3 lbf drag = 2.6% of the 950 lbf thrust

Equations

$$OD = \left(\frac{1}{2}\right) \rho v^{2} C_{f} A$$

$$OV = 2008 \frac{ft}{s}$$

$$OP = 0.02747 \frac{lb}{ft^{3}}$$

$$OP = 0.00119 \text{ (smooth finish)}$$

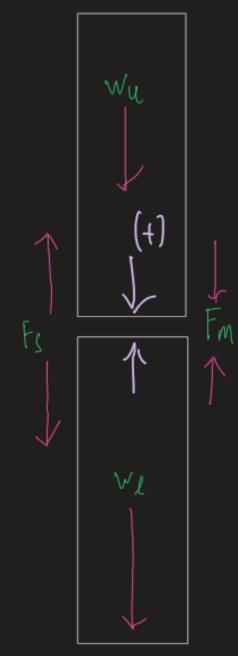
$$OP = 13.38 ft^{2}$$

$$OP = \frac{\rho vL}{\mu}$$

$$OP = 13.27 \text{ ft}, 5.5 \text{ ft}, 7.7 \text{ ft}$$

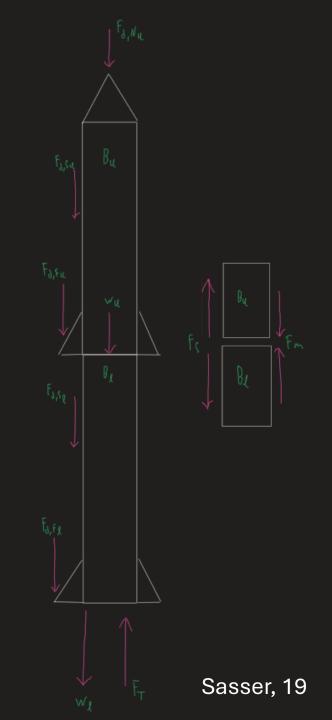
$$OP = 3.12 \times 10^{-7} \frac{lb}{ft}$$

Dynamic Analysis


- Four points will be considered:
 - Before launch at rest, with no normal force.
 - During launch with thrust force greater than zero.
 - During launch with no thrust force, & before separation.
 - During launch, at point of separation.

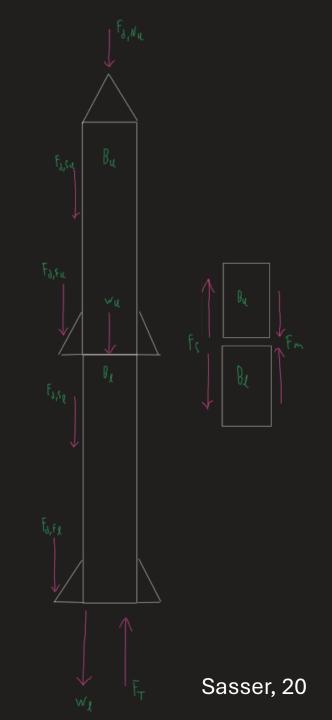
Dynamic Separation Analysis

- Before launch at rest, with no normal force:
 - Drag force, thrust force are zero.
 - Only existing forces are weight, magnetic, and spring.


•
$$F_m + W_u >= F_s + W_l$$

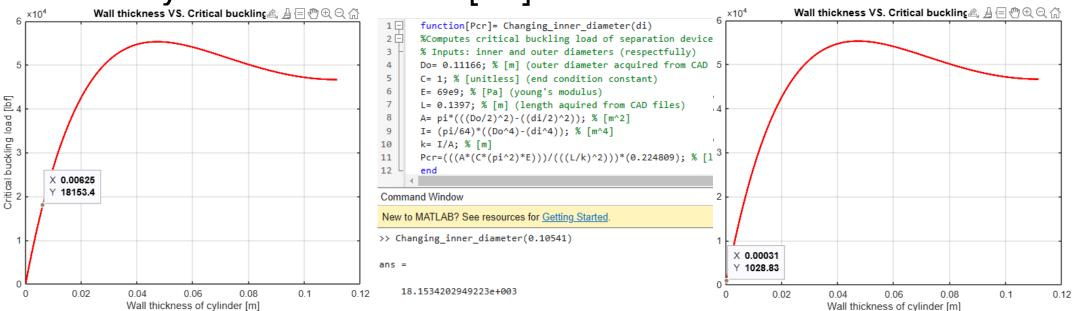
• This results in maintaining connection.

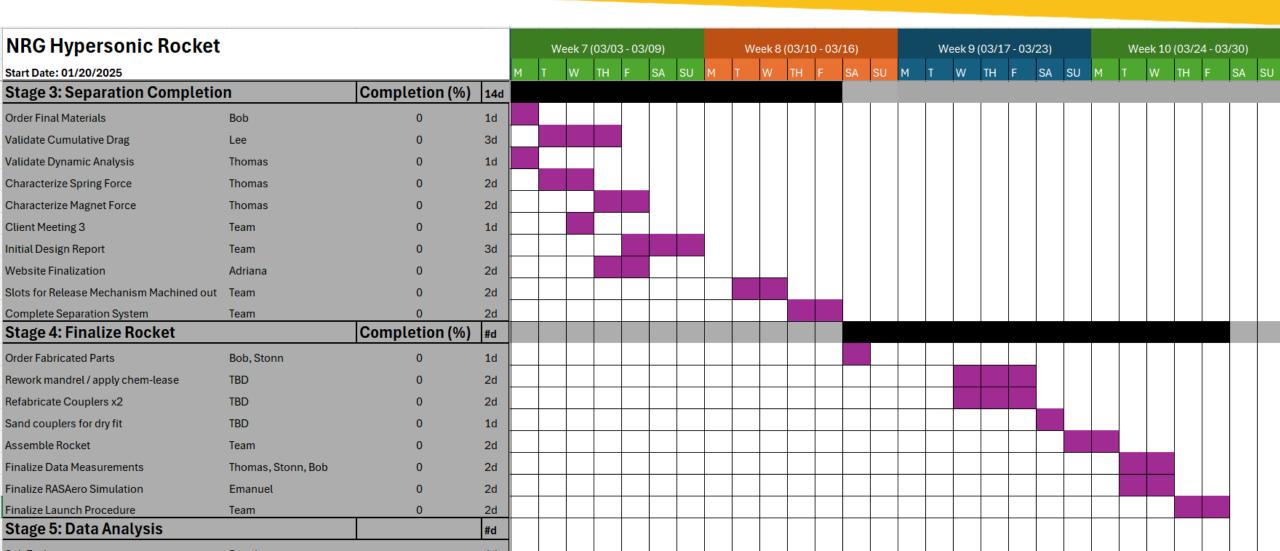
Dynamic Separation Analysis


- During launch with thrust force greater than zero.
- Upper and Lower Drag Forces:
 - $F_{d,U} = F_{d,N} + F_{d,S1} + F_{d,F1}$
 - $F_{d,L} = F_{d,S2} + F_{d,F2}$
- Analyzing for connection between stages:
 - ma = 0 at separation point relative to the rocket.
 - Positive is compression.
 - $F_T + F_{d,U} + W_u + F_m >= F_s + F_{d,L} + W_l$
- When Thrust force is over:
 - $F_{d,U} + W_u + F_m >= F_s + F_{d,L} + W_l$
 - To maintain connection

Dynamic Separation Analysis

- During launch at separation point:
 - When Fm is switched to act in tension.
 - Positive is in tension.
 - $F_m + F_s + F_{d,L} + W_l > F_{d,U} + W_u$
- This equation results in separation.


 These equations will be accurately calculated when separation altitude window is identified.


Bob's Analysis

• Separation device buckling analysis method 1: Used analysis to determine the use of Euler column analysis. Performed Euler column analysis by hand to determine critical buckling load

 Separation device buckling analysis method 2: used Euler column analysis with Pcr=1000 [lbf] and solved for inner diameter

Gannt Chart

Budget

- The budget for our project is \$5000, \$0 have been spent but we are planning to buy the drogue and main parachutes soon (estimates shown below).
- We have raised \$700 on GoFundMe so far

	Description:	Amount [\$]:				
Available funding -	Northrop Grumman funding	+\$5,000				
Donations -	GoFundMe	+\$700				
Current Expenses -	N/A	-\$0				
In-progress expenses -	N/A	-\$0				
Upcoming expenses -	36" DROGUE CHUTE [2]	-\$236.34				
	144" MAIN CHUTE [2]	-\$770				
Net Balance:		\$4,693.66 (after upcoming expenses)				

Bill of Materials (BoM)

Line						Need	Order By		Date	Grand	
Number	Item	Description	Quantity	Unit Cost	Total Cost	Date	Date	Date Ordered	Received	Total	\$3,544.32
1	Magnets	40 lbf	2	\$10.00	\$20.00	3/1/2025	2/15/2025	2/10/2025	2/24/2025		
2	Booster	N3300R	2	\$1,153.99	\$2,307.98	Nov-25	Aug-25	N/A	M/A		
3	Carbon Fiber	Material Standard Cett Aramid Honeycomp is a	TBD	Donated	Nothing	Aug-25	N/A	N/A	N/A		
4	Honey comb Core	lightweight, high strength, nonmetallic honeycomb core material used to add stiffness in weight critical applications 24"x48"	2	\$155	\$310	25-Aug	N/A	N/A	N/A		
5	Parachutes	36-in Drogue Parachutes	2	\$118.17	-	4/20/2025			N/A		
6	Parachutes	144-in Main Chute	2	\$385	\$770	4/20/2025	4/1/2025				
7											
8											
9											
10											

Conclusion

- Next Steps:
 - Machine out slots in separation system.
 - Characterize spring and magnet force.
 - Solve for Acceleration to determine accurate kinematics.
 - Finalize RASAero simulation.

References

- [1] R. Budynas and K. Nisbett, *Shigley's Mechanical Engineering Design*. McGraw-Hill, 2014.
- [2] The Engineering ToolBox, "Young's Modulus Tensile and Yield Strength for common Materials," *Engineeringtoolbox.com*, 2003.https://www.engineeringtoolbox.com/young-modulus-d 417.html
- [3] ACP Composites, "Aramid Honeycomb Core Standard Cell", 2025 honeycomb-core-standard-cell
- [4] "Aerotech N3300R-PS RMS-98/15360 reload kit (1 pack) 14330P," AeroTech/Quest Division, RCS Rocket Motor Components, Inc, https://aerotech-rocketry.com/products/product_4a713877-dd26-42a3-82a2-adf6b4b498f1 (accessed Mar. 3, 2025).